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Abstract

3D human pose estimation is a fundamental research area
in computer vision with numerous applications. Traditional
methods for human pose estimation primarily rely on RGB
images, which have inherent limitations such as occlusions
and lighting variations and cannot accurately complete large-
scale and long-distance tasks. Complementary, LiDAR has
great advantages in the field of 3D human pose estimation due
to its small environmental impact and long capture distance,
providing additional depth information that can enhance the
accuracy and robustness of human pose estimation. However,
combining RGB and LiDAR data for robust 3D human pose
estimation is still an open challenge. This paper proposes a
novel RGB-LiDAR fusion approach for human pose estima-
tion that fuses information from both modalities to achieve
improved accuracy and robustness. While existing methods
combining RGB and LiDAR data focus on estimating joint
positions, our proposed approach aims to estimate anatom-
ically plausible human body meshes for more realistic and
natural-looking results.

Introduction
Human pose estimation has been a prominent research topic
in computer vision due to its wide range of applications,
including action recognition, human-computer interaction,
and virtual reality. Traditional methods primarily rely on
RGB images to estimate the 2D or 3D human pose. Deep-
Pose(Toshev and Szegedy 2014)applied CNNs in a cascaded
regressor for 2D human pose estimation, whereas Tomp-
son et al. (Tompson et al. 2015)predicted heatmaps for the
joints instead of direct regression. VIBE(Kocabas, Athana-
siou, and Black 2020)has designed an action discrimina-
tor consisting of GRU layer and self attention layer to de-
termine whether the generated pose sequence is real. Hu-
MoR(Rempe et al. 2021)proposed a generation model in the
form of a CVAE for learning the distribution of potential
pose transitions in motion sequences. However, RGB im-
ages alone often suffer from inherent limitations such as oc-
clusions, lighting variations, ambiguity in depth perception,
small capture range and short capture distance.

Recently, LiDAR has been applied to 3D human pose es-
timation due to its advantages of large capture range, long
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capture distance, and minimal environmental interference.
A LiDAR sensor provides accurate depth information of a
large-scale scene with a large effective range by emitting
laser beams and measuring their time-of-flight or phase shift
upon reflection, which can complement RGB data and en-
hance the accuracy and robustness of human pose estima-
tion. The depth data can provide precise geometric measure-
ments of the scene, enabling accurate localization of human
body joints. These properties potentially allow capturing hu-
man motions under the long range setting in general lighting
conditions, without suffering from the degraded artifacts of
visual sensors.

By combining RGB and LiDAR data, we can leverage the
strengths of both modalities: the rich texture and appearance
information from RGB images and the accurate depth mea-
surements from LiDAR. However, combining multi-modal
information is not trivial. There are some works that com-
bine RGB and LiDAR for human pose estimation, such as
HPERL(Fürst et al. 2021), an end-to-end architecture for
multi-person 3D pose estimation that fuses RGB images and
LiDAR point clouds for superior precision. However, exist-
ing methods primarily focus on estimating joint positions
instead of human body meshes which are more anatomi-
cally plausible, realistic and natural-looking. In this paper,
we propose a novel RGB-LiDAR fusion approach for human
pose estimation. The estimated result will be in the form of
human body meshes. We fuses the information from both
modalities to achieve improved accuracy and robustness.

Related work
3D Human Pose Estimation. There are considerable
amount of prior works in 3D human pose estimation. There
are two main classes of human pose estimation methods, the
first of which is model based(Zanfir, Marinoiu, and Smin-
chisescu 2018; Kolotouros et al. 2019)and relies on statisti-
cal human body mesh models like SMPL(Loper et al. 2023).
These methods do not estimate 3D pose directly, but instead
regress the parameters of a statistical body model, which has
built-in anatomical and kinematic constraints. This leads to
more natural predictions, with body shape usually estimated
as well, even for poses not encountered during training. The
second class of methods is skeletonbased(Varol et al. 2018;
Sun et al. 2018), where the 3D pose is represented by 3D
joint positions and these are to be regressed or detected di-



rectly from the input. These methods have the advantage
of usually being more accurate and faster, but they are not
guaranteed to produce anatomically correct human skeletons
(e.g. the left arm may be reconstructed with different length
than the right arm). Our proposed model falls in the former
category, as our goal is to offer anatomically plausible esti-
mations which are more realistic and natural-looking.

RGB-Based HPE. RGB-based human pose estimation
methods can be divided into optimization-based methods
and regression-based methods. SMPLify(Bogo et al. 2016)is
an optimization based pose estimation algorithm that utilizes
neural networks to obtain 2D keypoints information from
images, and generates a 3D human body model based on the
human body parameterization model SMPL. By minimizing
the objective function, the error between the projected 2D
keypoints of the 3D human body model and the detected 2D
keypoints is penalized, and the human body model parame-
ters are iteratively optimized. HMR(Kanazawa et al. 2018)is
a regression based attitude estimation algorithm that directly
learns the mapping from 2D image pixels to 3D model pa-
rameters through deep neural networks. SPIN(Kolotouros
et al. 2019)combines iterative optimization based methods
with network regression based methods. In response to the
occurrence of occlusion in images. PARE(Kocabas et al.
2021)visualizes the impact of local occlusion on the global
pose. Through a partially guided attention mechanism, the
visibility information of individual body parts is utilized,
while the information of adjacent body parts is used to pre-
dict the occluded parts.

LiDAR-Based HPE. Due to the lack of depth informa-
tion in image-based methods, traditional keypoint projection
approaches often suffer from significant errors. Additionally,
image-based methods are susceptible to variations in light-
ing conditions, leading to degraded performance in low-light
environments. To address these problems, LiDAR is utilized
to scan the human body and the surrounding scene, generat-
ing point clouds data that contains shape, pose, and depth
information of the human body to estimate poses. How-
ever, due to the lack of ground-truth 3D human pose an-
notations paired with LiDAR data, there has not been a lot
of works on 3D human pose estimation from LiDAR in-
formation. PedX consists of 5, 000 pairs of stereo images
and LiDAR point clouds for pedestrian poses. The Waymo
Open Dataset(Sun et al. 2020)has a similar amount of 3D
annotations as PedX, but it features many more different
environments. LiDARHuman26M(Li et al. 2022) consists
of LiDAR point clouds, RGB videos, and IMU data. With
the existence of these datasets.With the existence of these
datasets, LiDARCap (Li et al. 2022) propose a three-stage
pipeline consisting of a temporal encoder, an inverse kine-
matics solver, and an SMPL optimizer to improve pose esti-
mation performance. GC-KPL(Weng et al. 2023)learns hu-
man 3D keypoints for in-the-wild point clouds without any
manual keypoint annotations. LPFormer(Ye et al. 2023)is
a complete two-stage top-down 3D human pose estima-
tion framework that uses only LiDAR point cloud as input.
LiDAR-based methods exhibits robustness against lighting
variations, but their accuracy heavily relies on the preci-
sion of the captured point cloud data. Therefore, a better

approach is to combine these two modalities for simulating
human body poses.

Multi-Modal HPE Based on Images and Point Clouds.
HPERL model trains on 2D groundtruth pose annotations
and uses a reprojection loss for the 3D pose regression
task. A multi-modal model(Zheng et al. 2022)uses 2D labels
on RGB images as weak supervision, and creates pseudo
ground-truth 3D joint positions from the projection of anno-
tated 2D joints. HUM3DIL leverages RGB information with
LiDAR points, by computing pixel-aligned multi-modal fea-
tures with the 3D positions of the LiDAR signal. However,
these methods primarily focus on estimating joint positions
instead of human body meshes.

Proposed Solution
We propose a multi-modality baseline for human motion es-
timation. Given the synchronized LiDAR point clouds and
RGB images that are captured by multiple sensors, the task
of the baseline is to predict the 3D pose of the human in the
world coordinate system.

As is depicted in Figure 1, our method consists of three
major modules: feature extractors, the multimodal cross-
attention model (MMCA), and SMPL-based inverse kine-
matics solver. For each modality, feature extractors are used
to extract its features, which are fused through the MMCA
modules to fully utilize the 3D geometric information of
point clouds and the appearance information of RGB im-
ages. In the end, the fused features are fed into SMPL solver
to obtain the estimated poses.

Feature Extraction
RGB Feature Extraction. To extract the corresponding
feature for each RGB frame, we first project the point cloud
of the body onto the image, which could determine the
boundary of the point cloud in this frame. Then, the bound-
ing box that corresponds to the human body can be obtained.
We crop the image from the bounding box and feed the im-
age into a RGB encoder (DINOv2 (Oquab et al. 2023)). The
feature for RGB modality, Rfi−N

is obtained.
LiDAR Feature Extraction. For the human body point

clouds PW
i−N , we extract its features Pf3di−N

by feeding the
point clouds into a PointNet++ (Qi et al. 2017) and a GRU
network.

MMCA
To automatically learn correspondence among two modali-
ties and eliminate calibration sensitivity, we uses the cross-
attention strategy. The LiDAR point clouds and the RGB im-
ages are fused using the multimodal cross-attention model
(MMCA). We aims to effectively integrate the geometry
information with appearance information, which allows a
comprehensive integration of the features from different
modalities.

The design of the MMCA is depicted in Figure 1. The
LiDAR features F3Di−N

and the RGB features F2Di−N
are

processed through a series of transformer encoders (Vaswani
et al. 2017) and self-attention mechanisms. MMCA employs
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Figure 1: Overview of our method (Left) and Multimodal Cross-Attention Unit (Right). Orange arrows represent different
modalities of data input. Dark blue arrows represent the inputs and outputs data flows of the MMCA model. Dotted arrows
represent the predicted data and calculation loss with ground truth.

a 2-layer cross-attention structure, using the fused keys as in-
termediaries to match and align two sources of information.
In the first layer, the features from the LiDAR act as queries,
while the features from the RGB serve as keys and values.
In the second layer, the output from the last layer serves as
the keys; the LiDAR feature and RGB feature serve as query
and value, respectively. The output features are obtained by
element-wise addition of the input features and the results of
the cross-attention structures.

MMCA is a flexible method which can use different com-
binations of modalities as input. For single-modality input,
the extracted input features are fed into the MMCA whose
cross-attention module is replaced with a self-attention mod-
ule. For two-modality input, features from two modalities
are fed into the MMCA.

SMPL-Based Inverse Motion Solver
The fused features Fmmfusion obtained from MMCA, are
used in this solver, which consists of three branches. In the
first branch, the extracted features are inputted into a 3D re-
gressor, which is responsible for estimating the 3D joints and
camera intrinsic parameters. To guide the training and en-
sure accurate estimation, three loss functions are employed
in this branch. The first loss function, Lps2d, serves as a pro-
jection loss, which ensures that the 2D appearance of the
SMPL model aligns with the human body in pixel coordi-
nates. By minimizing the discrepancy between the projected
2D model and the observed human body in the image, this
loss function aids in achieving accurate alignment and pixel-
level correspondence. This loss is defined as:

Lps2d = Lshape2d + Lpose2d (1)

Lps2d consists two terms that specifically target the pose
and shape parameters of the SMPL model. The shape term β
is the 10-dimensional shape parameter of the SMPL model.
The pose term, θ, is a N × 3× 3 rotation matrix, where N is
24 and represents the number of joint points. Lshape2d and
Lpose2d are defined as follows.

Lshape2d =
1

10

10∑
i=1

(βpredi
− βgti)

2 (2)

Lpose2d =
1

N × 3× 3

N∑
i=1

3∑
j=1

3∑
k=1

(θpredijk
− θgtijk)

2 (3)

where βpred and βgt are the predicted and ground-truth
shapes, respectively. θpred and θgt are the predicted and
ground-truth poses, respectively.

The second loss function, Lkp2d, is used to constrain
the 2D joints of the human body. By comparing the esti-
mated joints KP2dpred with the ground truth annotations
KP2dgt, this loss function encourages the regressor to ac-
curately capture the spatial relationships and positions of the
joints in the 2D image space.

Lkp2d =
1

N × 2

N∑
i=1

2∑
j=1

(KP2dpredij
−KP2dgtij )

2 (4)

The 3D joints predicted by the 3D regressor are con-
strained by the loss Lkp3d, which ensures that the regressor
accurately captures the spatial relationships and positions of
the joints by comparing predicted joints KP3dpred with the
ground truth annotations KP3dgt.

Lkp3d =
1

N × 3

N∑
i=1

3∑
j=1

(KP3dpredij −KP3dgtij )
2 (5)

In the second branch of the solver, the extracted features
are fed into a RNN network, which is designed to gener-
ate the 3D human joints in the world coordinate system. To
guide the training process and ensure appropriate joint pre-
diction, we employ LW

joint to encourage alignment between
the predicted 3D joints Jtpred and the ground truth labels
Jtgt.
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Figure 2: This figure presents the visualization results of different methods on LiDARHuman26M. The leftmost column is the
reference image, while the remaining five columns depict the results of FusionPose, ImmFusion, LiDARCap, MMCA without
RGB, and MMCA with full modalities, respectively. It can be observed that other methods exhibit significant estimation errors,
particularly in capturing hand pose of individuals.

LW
joint =

1

N × 3

N∑
i=1

3∑
j=1

(Jtpredij
− Jtgtij )

2 (6)

The third branch of our approach employs ST-GCN (Yan,
Xiong, and Lin 2018), where the fused features from the pre-
vious branches are utilized to predict the 3D human joints.
To ensure accurate joint orientation, we apply Lsmpl

joint to en-
courage alignment between the predicted joint orientations
Jtpred and the ground truth orientations Jtgt.

Lsmpl
joint =

1

N × 3

N∑
i=1

3∑
j=1

(Jtsmpl
predij

− Jtsmpl
gtij )2 (7)

The outputs of this branch, which represent the predicted
3D joints, are then passed through a SMPL optimizer that
converts the joint positions into human poses in axis-angle
form. And the loss Lsmpl

pose is employed to enforce alignment
between predicted pose θsmpl

pred with the ground truth poses
θsmpl
gt .

Lsmpl
pose =

1

N × 3× 3

N∑
i=1

3∑
j=1

3∑
k=1

(θsmpl
predijk

− θsmpl
gtijk

)2 (8)

All the aforementioned losses play crucial roles in our
method to achieve accurate estimates of human pose.

Experiments
Implementation Details. We use two RGB-Based meth-
ods to estimate human posture. First, we test HMR. we em-
ploys a pre-trained network to regress pose, shape and cam-
era parameters. Second, we use VIBE, which first extracts
the spatial features of the image through Resnet50, and then
processs the sequence through GRU to learn its temporal
features, finally obtain 82 SMPL parameters through the re-
gression layer.

For LiDAR-Based method, we conduct experiments us-
ing LiDARCap (Li et al. 2022). This method includes the
extraction of point cloud features and the solution of human
posture. The first step is to process the point cloud through
PointNet++(Qi et al. 2017) and extract the global descriptor.
Then, a temporal encoder implemented using GRU is used to
fuse the temporal information in consecutive frames. Next,
an MLP decoder is used to predict the positions of human
joints based on the fused features. The predicted joint posi-
tions are combined with the 1024-dimensional features and
fed into ST-GCN, which computes the predicted pose pa-
rameters. Finally, joint positions are calculated in the SMPL
optimizer, resulting in predicted human body information,
including pose and other relevant details.



Input Modality Method ACCEL↓ MPJPE↓ PA-MPJPE↓ PVE↓ PCK0.3↑

RGB HMR (Li et al. 2022) 220.07 224.86 130.71 284.15 0.49
VIBE (Kocabas et al. 2020) 120.49 154.61 108.19 191.55 0.82

LiDAR
LiDARCap (Li et al. 2022) 45.89 80.08 67.50 102.24 0.85

MMCA(Ours) 45.60 79.00 67.45 100.87 0.85

LiDAR+RGB

ImmFusion (Chen et al. 2023) 46.45 96.93 81.16 107.29 0.75
FusionPose (Cong et al. 2023) 44.51 78.18 66.70 99.66 0.85

MMCA(Ours) 44.52 75.09 62.94 95.96 0.87

Table 1: Performance evaluation of MMCA in the LiDARHuman26M dataset (Li et al. 2022). Unit: mm

We use two methods in experiments to predict human pos-
ture based on point clouds and RGB images. The first is
ImmFusion (Chen et al. 2023), which can be divided into
three main parts. In the first part, images and point clouds
are passed through the modal masking module. In the sec-
ond part, PointNet++(Qi et al. 2017) is used to extract fea-
tures from the point cloud. For images, HrNet is used to
extract local mesh features, which are then converted into
global features using CNN. At the same time, the local grid
features are adjusted by MLP to match the size of the local
cluster features of the point cloud. The global features of the
two modalities are fused together using a small Transformer
module, and the template’s vertices and joints are also in-
corporated into this fusion process. The last part combines
the features to obtain the fusion features through the Fusion
Transformer Module. Finally, the fused features are input
into SMPL to obtain human pose.

The second is FusionPose (Cong et al. 2023), which is a
method that combines 3D point clouds and 2D perspective
RGB images for human pose prediction. In their proposed
IPAFusion approach, a fusion technique is introduced to ef-
fectively combine the two modes. To extract features from
point clouds, they adopt PointNet, which provides global
feature representation. This global feature is then combined
with the original feature to obtain the final feature. Simi-
larly, for image modality, HrNet is selected to extract fea-
tures. This process produces the final feature. In the image-
to-point attention fusion part, they utilize cross-attention to
fuse two features. Finally, the fused features are input into
GRU+MLP to obtain the predicted SMPL human pose.

Evaluation Metrics. We report Mean Per Joint Posi-
tion Error (MPJPE), Procrustes Aligned Mean Per Joint
Position Error (PA-MPJPE), Percentage of Correct Key-
points (PCK0.3), Per Vertex Error (PVE), Acceleration
Error(mm/s2) (ACCEL). The PCK0.3 is calculated as a
percentage, while other indicators are in mm.

Dataset: LiDARHuman26M. In this paper, we utilize
the first long-range LiDAR-based motion capture dataset,
LiDARHuman26M. The dataset is collected from two in-
dependent scenes: one in a patio and the other in an open
spaces within two buildings. Thirteen volunteers, including
11 males and two females, are recruited for the data collec-
tion process. Each participant was involved for a duration
ranging from 15 to 30 minutes.LiDARHuman26M provides
184, 048 frames, 26, 414, 383 points, and 20 kinds of daily

motions(including walking, swimming, running, phoning,
bowing, etc). It consists of three modalities: synchronous Li-
DARpoint clouds, RGB images, and ground-truth 3D human
motions from professional IMU-based mocap devices. We
preprocessed the data by erasing the background and elimi-
nating the localization error of the IMUs.

Comparison Experiments. We evaluate the proposed
method, MMCA, based on the LiDARHuman26M (Li et al.
2022) dataset, which contains both RGB and LiDAR modal-
ities. In this experiment, we follow the same evaluation as
LiDARCap(Li et al. 2022). As is shown in Table 1, benefit-
ing from the effective use of 3D spatial information, LiDAR-
Based methods and LiDAR+RGB-Based methods signifi-
cantly outperforms RGB-Based mothods. Due to the long
collection distance of the LiDARHuman26M dataset, RGB
images provide less useful information then LiDAR. When
considering LiDAR input alone, MMCA demonstrates a
slight improvement over LiDARCap. When combining Li-
DAR and RGB inputs, MMCA out-performs ImmFusion
(Chen et al. 2023) and FusionPose (Cong et al. 2023). Us-
ing two modalities (RGB+LiDAR) leads to better perfor-
mance than using these two modalities separately. As the
number of modalities increases, the performance of MMCA
improves. This emphasizes that correctly fusing the infor-
mation of each modality feature makes the method robust.

Conclusion
In conclusion, we have proposed a human pose estimation
method based on the multi-modal cross-attention mecha-
nism. This approach effectively extracts and integrates fea-
tures from both RGB images and point clouds, enabling
the prediction of human joint information. Through our
proposed method, we address issues present in traditional
single-modal RGB image methods, such as spatial ambigu-
ity and sensitivity to lighting changes, as well as the insuffi-
cient texture information in single-modal point cloud meth-
ods. Finally, we utilize the SMPL model for optimization
fitting to obtain the final human body mesh model and vi-
sualize the results. The experimental errors obtained using
our proposed method are consistently lower than those of
any single-modal approach, providing evidence of the effec-
tiveness of our method.We hope that the general techniques
introduced here will be valuable to other researchers dedi-
cated to improving the performance of human pose estima-
tion models.
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